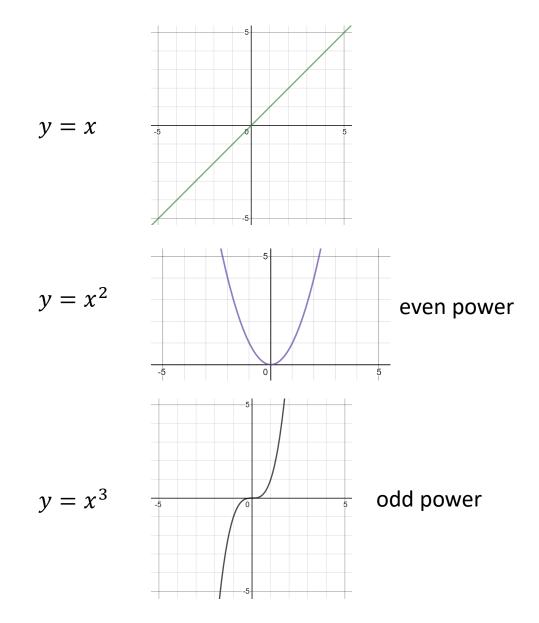
LESSON 5. 3a

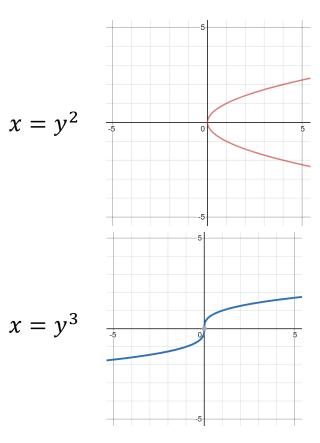
Transforms of Radical Functions

Today you will:

- Apply our knowledge of function transforms to radical functions.
- Apply our knowledge of quick graphing to graph radical functions.
- Practice using English to describe math processes and equations

Basic shapes of functions





Key attributes for quick graphing a function

- Shape (U or S)
 - U even power (parabola)
 - S odd power (cubic)
- Vertex/turning point
 - Vertex for parabola
 - Turning point for cubic
- Opening direction (up, down, left, right)
 - Up/down for y=
 - Left/right for x=
- Intercepts
 - X-intercepts (a, o) ... when y = 0
 - Y-intercepts (0, a) ... when x = 0

Tranformations of Functions

Transformation	f(x) Notation	Examples	
Horizontal Translation	f(x = b)	$g(x) = \sqrt{x-2}$	2 units right
Graph shifts left or right.	f(x-h)	$g(x) = \sqrt{x+3}$	3 units left
Vertical Translation		$g(x) = \sqrt{x} + 7$	7 units up
Graph shifts up or down.	f(x) + k	$g(x) = \sqrt{x} - 1$	1 unit down
Reflection	f(-x)	$g(x) = \sqrt{-x}$	in the y-axis
Graph flips over <i>x</i> - or <i>y</i> -axis.	-f(x)	$g(x) = -\sqrt{x}$	in the <i>x</i> -axis
Horizontal Stretch or Shrink Graph stretches away from	f(ax)	$g(x) = \sqrt{3x}$	shrink by a factor of $\frac{1}{3}$
or shrinks toward y-axis.		$g(x) = \sqrt{\frac{1}{2}x}$	stretch by a factor of 2
Vertical Stretch or Shrink		$g(x) = 4\sqrt{x}$	stretch by a
Graph stretches away from	$a \circ f(x)$		factor of 4
or shrinks toward <i>x</i> -axis.	$a \bullet f(x)$	$g(x) = \frac{1}{5}\sqrt{x}$	shrink by a factor of $\frac{1}{5}$

Typical problem types with transformations...

- 1. Describe how a function has been transformed from the parent function
 - Compare the function to its parent
 - Can look at the graph
 - Can look at the function equations themselves
- 2. Apply transformations to a function
 - Do them in order. Order matters!
 - Do them *****ONE AT A TIME*****
- 3. Quick graph a function
 - Use the key attributes

Describe the transformation of *f* represented by *g*. Then graph each function.

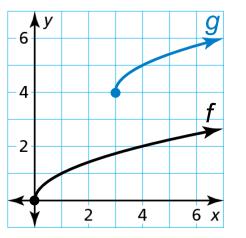
a.
$$f(x) = \sqrt{x}, g(x) = \sqrt{x-3} + 4$$

SOLUTION

a. Notice that the function is of the form $g(x) = \sqrt{x - h} + k$, where h = 3 and k = 4.

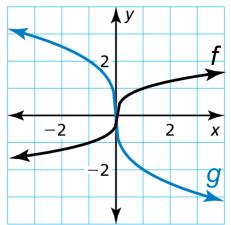
LOOKING FOR STRUCTURE

In Example 2(b), you can use the Product Property of Radicals to write $g(x) = -2 \sqrt[3]{x}$. So, you can also describe the graph of *g* as a vertical stretch by a factor of 2 and a reflection in the *x*-axis of the graph of *f*. So, the graph of *g* is a translation 3 units right and 4 units up of the graph of *f*.



b.
$$f(x) = \sqrt[3]{x}, g(x) = \sqrt[3]{-8x}$$

- **b.** Notice that the function is of the form $g(x) = \sqrt[3]{ax}$, where a = -8.
 - So, the graph of *g* is a horizontal shrink by a factor of $\frac{1}{8}$ and a reflection in the *y*-axis of the graph of *f*.



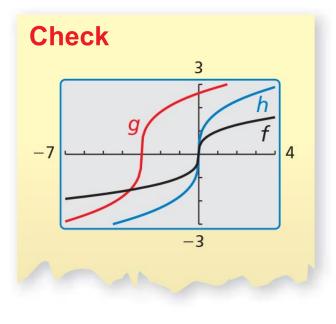
Let the graph of *g* be a horizontal shrink by a factor of $\frac{1}{6}$ followed by a translation 3 units to the left of the graph of $f(x) = \sqrt[3]{x}$. Write a rule for *g*. SOLUTION

Step 1 First write a function *h* that represents the horizontal shrink of *f*.

$$h(x) = f(6x)$$
Multiply the input by $1 \div \frac{1}{6} = 6$ $= \sqrt[3]{6x}$ Replace x with $6x$ in $f(x)$.

Step 2 Then write a function *g* that represents the translation of *h*.

g(x) = h(x + 3)Subtract -3, or add 3, to the input. $= \sqrt[3]{6(x + 3)}$ Replace x with x + 3 in h(x). $= \sqrt[3]{6x + 18}$ Distributive Property



Homework

Pg 256, #19-28, 41-50